- Best
Available
Copy

A281 134 Computer Science -)
N 0 | g

Dome: Distributed object migration environment

Adam Beguelin Erik Seligman Michael Starkey
May 1994
CMU-CS-94-153

— TR CYON WATENT K

chdhpnﬂﬂnm !
B chulbmﬂnhmm

DTIC .
e §4°D

20659 DTIC QUALITY INSPECTED 3

\\I\\\\\\\‘\i\\‘i\\l\\II\\H\\I‘ |\\‘|\|\\\|l\ O

94 7 6 099

Dome: Distributed object migration environment

Adam Beguelin Erik Seligman Michael Starkey

May 1994
CMU-CS-94-153

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Abstract

Dome is an object based parallel programming environment for heterogeneous
distributed networks of machines. This paper gives a brief overview of Dome.
We show that Dome programs are easy to write. A description of the load bal-
ancing performed in Dome is presented along with performance measurements
on a cluster of DEC Alpha workstations connected by a DEC Gigaswitch. A
Dome program is compared with a sequential version and one written in PVM.
We also present an overview of architecture independent checkpoint and restart
in Dome.

This research was sponsored by the National Science Foundation and the Defense
Advanced Research Projects Agency under Cooperative Agreement NCR-8919038 with
the Corporation for National Research Initiatives.

The views and conclusions contained in this document are those of the authors and
should not be interpreted as representing the official policies, either expressed or im-
plied, of NSF, CNRI, ARPA, or the U.S. Government.

Keywords: Heterogeneous parallel programming, load balancing, check-
point and restart, Dome, PVM

1 Introduction

A collection of workstations can be the computational equivalent of a super-
computer. Similarly, a collection of supercomputers can provide an even more
powerful computing resource than any single machine. These ideas are not new;
parallel computing has long been an active area of research. The fact that net-
works of computers are commonly being used in this fashion is new. Software
tools like PVM [1, 7], P4 [11)], Linda [4], Isis [2], and Express [6] allow a pro-
grammer to treat a heterogeneous network of computers as a parallel machine.
These tools allow the programmer to partition a program into pieces which may
then execute in parallel, occasionally synchronizing and exchanging data. (The
tools generally support conversion from one machine’s data format into another,
thus providing support for heterogeneity.) We see these tools as useful but we
strive for something higher level, something that can aid the programmer in
parallel programming but also support load balancing and fault tolerance.

When using the previously mentioned tools, one needs to partition the pro-
gram into parallel tasks and manually distribute the data among those parallel
tasks, a difficult procedure in itself. To further complicate matters, in most
cases the target network of machines is composed of multiuser computers con-
nected by shared networks. This fact further burdens the programmer. Not
only do the capacities of the machines differ because of heterogeneity but their
capacities vary from moment to moment according to the load imposed upon
them by multiple users. Failure is yet another consideration. If we are now us-
ing 2 number of machines to execute a long running program, the chances of a
failure during program execution are increased, and therefore must be carefully
considered.

Dome is our approach to the problems of parallel distributed computing in a
heterogeneous networked environment. Dome provides a library of distributed
objects for parallel programming that perform dynamic load balancing and sup-
port fault tolerance. Dome programmers, with modest effort, can write parallel
programs that are automatically distributed over a heterogeneous network, dy-
namically load balanced as the program runs, and able to survive compute node
failures.

Dome shares attributes with many other research projects. Gannon’s pC++
(3, 9] is an attempt to extend C++ to a parallel programming language. High
Performance Fortran (HPF) [8] is an emerging standard for writing distributed
memory parallel Fortran programs. While we applaud efforts to develop lan-
guage based mechanisms for expressing parallelism and data mapping in dis-
tributed memory machines, we are most interested in using existing languages
and exploring object oriented mechanisms for parallel distributed computing.
It is our hope that the knowledge gained in developing Dome can be used later
in compilers that target heterogeneous networks.

LaPack++ [5] provides an object oriented interface to the LaPack routines
for parallel linear algebra. Like LaPack++, Dome provides a library of parallel

objects. Dome, however, is a more general paradigm, providing objects and
features which are useful in a wide variety of parallel programming areas. We
focus both on providing the objects themselves, and the tools, such as fault
tolerance and load balancing, to make it easy and convenient to write efficient
parallel programs.

This paper provides the motivation and overview of Dome including a pre-
liminary performance evaluation of dynamic load balancing for vectors. We
argue that programming in Dome is much easier than programming with low
level primitives and that with dynamic load balancing good performance can be
achieved in Dome.

2 Dome Programming

This section describes the Dome programming model. For discussion purposes
we use a simple dot product program written using the Dome distributed vector
class. Dome programs are written in C++ and the Dome objects make use of
operator overloading to allow the programmer to easily express parallelism.

In order to achieve the goals of ease of programming, automatic load balanc-
ing, and architecture independent fault tolerance, Dome programs must have
a certain structure. Dome programs are written using a single program mul-
tiple data (SPMD) style. At runtime the Dome program is replicated over a
number of machines. Each of these replicated programs, which we call tasks,
executes in parallel but on different sets of data. The distribution of the data
and the extent upon which the programmer controls this distribution depends
on the Dome object class the programmer uses. The default distribution of the
Dome distributed vector class, dVector, is for the elements of the vector to be
fragmented across the tasks in a block fashion. In this case each task contains
approximately n/t elements where n is the total number of elements in a dVec-
tor and ¢ is the number of tasks involved in the computation. Note that the
programmer need not be concerned with the exact data mappings. Dome takes
care of this automatically.

Let’s examine the Dome dot product example in more detail (Figure 1).
Keep in mind that copies of the same program are running in parallel, typically
on all machines in the current virtual machine. The first Dome variable to be
declared in the program is tdome; this is the Dome environment variable. It
is used to keep track of Dome tasks and the layout of all Dome variables in a
program. The program arguments are passed on as the parameters to the tdome
constructor. This allows Dome to start multiple copies of the executable, in this
case the dot product program. By default a Dome program will execute on all
the processors in the virtual machine. This can be overridden by specifying a
count to the Dome constructor indicating the number of tasks to be used.

Next, dVectors vi, v2, and prod are declared. The Dome dVector class
supports templates, in this case the dVectors are made up of double precision

// Dot Product
// This is a simple example of a minimal Dome program.
// It computes the dot product of two vectors.

// C++ includes
#include <stdlib.h>
#include <stream.h>

// Dome includes
#include "dome.h"
#include "dVector.h"
#include "domeobj.h"

// The main program

int

main(int argc, char *argv[l)
{

const int count = 4; const int vector_size = 10240; double dp;

// Create a dome environment. The first step in any dome program.
dome tdome(argc, argv);

// Each of these vectors will be spread across all processes.
dVector<double> vi(tdome, vector_size);

dVector<double> v2(tdome, vector_size);

dVector<double> prod(tdome, vector_size);

// Assign the values to the vectors
vl = 1.0; v2 = 3.14;

// Compute the product, using the overloaded vector product operator.
prod = vi * v2;

// Compute the sum of all the elements of prod.
dp=prod.gsum();

// Print the result
cout << "The dot product is " << dp << ’\n’;

Figure 1: A simple dot product program using Dome.

Task 0 Task 1 Task2
fvi 1} vt |
|| G
[proda 7] [proda |

Bl

Figure 2: Multiple tasks executing the Dome dot product program.

floating point numbers. Notice that the Dome environment variable tdome is
given in the declaration of the dVectors. The dimension of the dVectors is also
given. These dVe:tors will be stored using a block distribution. By default
the vectors will be automatically load balanced. The distribution and load
balancing can be overridden by the programmer by using various options in the
declaration.

The dot product program then assigns values to the vectors v1 and v2. These
assignments of a scalar to a vector are done in parallel. For instance, all tasks
in parallel perform the assignment on the elements in the block stored on that
task. The assignment of prod = v1 x v2 also happens in parallel. The elements
of vl and v2 are pairwise multiplied and the result is assigned to prod.

At this point in the program each task has a block of v1, v2, and prod. In
order to compute the dot product we need to calculate a global sum on the prod
vector. The dVector class contains a method called gsum. This method returns
the global sum of all the elements in the vector. In the gsum method each task
calculates the sum of its elements and then those partial sums are combined
into a global sum. Each task receives a copy of the global sum, thus the scalar
dp is the same in all tasks after the call to gsum.

The data layouts of the dot product program are depicted in Figure 2. Here
we can see the vectors are block distributed and the scalars such as dp are
replicated.

The equivalent PVM dot product program is several pages in length. If
we add to this the load balancing and check-pointing facilities of Dome, the
equivalent PVM program would be much longer. The point we would like to
make here is that Dome programs are easier to write and the underlying support
for load balancing and fault tolerance can be easily hidden from the programmer

using object oriented techniques.

2.1 Extending Dome Classes

As with most C++ classes, Dome classes such as dVectors can be easily ex-
tended. For instance, a dVector of complex numbers can be easily created, as is
shown in Figure 3. Here a complex class is defined with the normal operators
that are needed for such a class. The only Dome specific methods that must be
defined are pvm_pk, pvm_upk, and dome_initzalize. The pvm_pk and pvm_upk
functions tell Dome how to pack the class into a PVM message. For the complex
number class this is simply a pvm_pkfloat for the real and imaginary parts of
the complex number.

3 Dome Load Balancing

Dome programs typically execute on a heterogeneous collection of multiuser ma-
chines. In such an environment dynamic load balancing is very important. Not
only can the native speeds of the machines be vastly different but the available
performance of the machines can vary based on externally imposed loads. Qur
current approach to load balancing in Dome is to do periodic synchronization
and data migration among the parallel tasks. This load balancing is completely
transparent to the programmer.

We call the synchronization and data migration a load balancing phase. Like-
wise, the time between load balancing phases, when useful work is performed,
is called a work phase. We do not attempt to predict the performance of work
phases, rather we measure the performance of a task during its work phase and
use this information for load balancing. Load balancing phases are triggered by
the number of operations performed on Dome objects. For instance, a multiply
of two dVectors is a single operation. After a certain number of operations have
been performed, say 50, a load balancing phase begins. During a load balancing
phase, tasks exchange information regarding their performance during the pre-
ceding work phase. Currently this performance information simply contains the
elapsed time, measured by the system clock, that it took to perform the pre-
vious work phase. During the load balancing phase, Dome tasks communicate
using a ring topology. Each task exchanges its performance information to its
left and right neighbor in the ring. Based on this information, portions of the
Dome objects are migrated. For instance, if a task is slower than its neighbors
then it will send part of its Dome objects to the speedier neighbors. Note that
this data movement is local, involving only neighbors. The advantages of this
approach are that it reduces the amount of global synchronization among the
tasks and it will converge to the right distribution using a relative measure of
the load. The disadvantage is that it converges slowly.

We have built a tool which shows the changes in the distribution of dVectors

#include <dVector.h>

class complex {

private:
double real;
double imaginary;

public:
complex();
“complex();
complex& operator+=(const complex& rhs);
complex& operator=(const complex& rhs);
complex operator/(const complex& rhs) const;
complex operator*(const complex& rhs);
complex operator-(const complex& rhs);
complex operator+(const complex& rhs);
int operator<(const complex& rhs);
int operator>(comst complex% rhs);
int operator!=(const complex& rhs);

friend ostream& operator<<(ostream¥ s, complexk a);
friend ifstream& operator>>(ifstream& s, complex& a);
friend int pvm_pk(complex *np, int cnt, int std);
friend int pvm_upk(complex #ap, int cnt, int std);
friend void dome_initialize(complexk a);

};
main(int argc, char #argv([]){
dome e(argc,argv);

dVector<complex> vi(e,100);
}

Figure 3: Extending dVectors to handle complex numbers.

as they change over time. Figure 4 shows a screen dump of this tool. The
upper window in Figure 4 shows the dVector mapping while the lower window
shows the loads of the processors over the same time period. Notice that vectors
can be load balanced “off the ends” where data at the ends of the vector can
move around to the process handling the other end of the vector. The loads
are indicated by the amount of time spent computing on dVectors, thus it is
an indication of how fast the processors are on dVector computations and not
a more general measurement of load. However, this computation reflects some
function of the load on the processor.

This approach to dynamic load balancing is straight forward and can be
done relatively quickly. Eventually we plan on developing more sophisticated
load balancing techniques, but first it is essential to understand how this simple
approach performs.

3.1 Results of Load Balancing

In order to evaluate Dome and this approach to load balancing we have per-
formed the following experiment. We have written a matrix multiply in Dome
using dVectors. We compare this code to a sequential version of matrix multiply
and a version written using PVM directly. The PVM program uses the same
algorithm as the Dome program. Dome is implemented using PVM, therefore
this comparison allows us to measure the overheads involved in the current im-
plementation of Dome. The code for all three versions can be found in the
appendices. It is important to note the Dome and sequential versions are the
same length while the PVM version is 69% longer.

We ran the programs on the Alpha cluster at the Pittsburgh Supercomput-
ing Center. This cluster is an isolated network of DEC Alpha workstations
connected by a DEC Gigaswitch. (The Gigaswitch provides point to point
FDDI between the workstations.) No other users were allowed access to the
cluster during our experiments. We ran the matrix multiply codes while im-
posing various levels of additional load on one of the machines. The additional
load imposed consisted of multiple copies of the sequential version of the matrix
multiply program running in an infinite loop. We also adjusted the frequeucy
of the load balancing.

Figure 5 shows the runtimes for the programs on the system with no addi-
tional load. All times shown are for 10 matrix multiplies, C = A x B, where
A is 3 x 262144 and B is 262144 x 3. The matrices are double precision. All
programs were compiled with the DEC cxx compiler using optimization. PVM
version 3.2.6 was used in the distributed cases. The seq data point indicates
the runtime for the sequential matrix muitiply. The PVM line indicates the
runtimes for the PVM program, some speedup was achieved. The Ib cases show
the runtimes for the Dome program using various numbers of load balancing
phases and no load balancing phase in the no lb case. For the runtimes in
Figure 5 the machines are evenly loaded, Dome’s load balancing hinders the

» GS56,5P,CS,CMULEDU (pmax_mach)
a dao (sund_mach)

= concord {sund_mach}

. cabernet (sund_mach)

- 6556,5P.CS.CHUEDU {pmax_mach)
~dao (sund_mach)

~concord {sund_mach)

~ cabernet {sund_mach)

Figure 4: dVector mappings and machine loads over time.

4.5e+07 T T T T Y
seq ©
pvm o
4e+07 + nolb +
b7 o
b3 x
b2 &
3.5e+07 | b1 = A
Ib 7 overhead ©
lb30verheag x
ib 2 overhead o
Je+07 | bt overhead x
8 2.50+07 | J
&
2
]
E 2e+07 1
-
1.5e+07 | - o
tes07 | i
5e+06
o e, LR T I ALY = =)
0 2 8 10 12

6
Number of processors
Figure 5: Timing results in a balanced system.

computation slightly due to the cost of periodic synchronization to determine
that the system is balanced. All the Dome values are very close except for the
Ib 7 case. Note that there is some load balancing taking place as shown by the
overhead data. The overhead includes the time for each task to send the num-
ber of elements it has and its time per element to its neighbors and to do the
data movement specified by the resulting calculations. The closeness of the 1b
values demonstrates that at the very least, the load balancing code can absorb -
its own overhead.

Figure 6 displays the results of running the programs while one extra loader
process is running on one of the workstations (again this loader process is the
sequential matrix multiply in an infinite loop). As expected, the sequential
runtime has roughly doubled. The PVM runtimes are slightly longer than in
the no load case. The Dome runtimes have also increased as have the different
values for the load balancing overhead. This increase in the overhead is cancelled
in most of the load balancing cases by the redistribution of the dVector and,
although difficult to see in this figure, some of the load balanced runtimes are
quicker than with no load balancing.

Finally, Figure 7 shows the runtimes where two loader processes are running

4.5e+07

:

2e+07

Time (usecs.)

g

16+07

£

555502
2w T3
XDXDXDPXO+ 0O

Figure 6: Timing results with one loader process.

10

4.5e+07 T T T —T" T
* (All Q
pvm o
4e+07 | notb +
b7 o
b3 x
b2 a
3.5e+07 | bt = -
ib 7 overhead O
Egoveﬂwad x
overhead a
3es07 | Ib 1overhead = 7
4 2.50407 |- i
3
2
[
E 20407 | B
-
1.5e+07 | -
1e+07 | p
5e+06 |- 4
0 L
] 2 12

Figure 7: Timing results with two loader processes.

on one of the processors. Again as expected, the sequential program is about
three times slower than the no load case. Both the PVM and Dome versions are
slower than their counterparts in the two previous figures. The load balancing
is now starting to consistently show improvement over the non-load balanced
case. The Ib 1 case is consistently faster than the no 1b case. The runtime has
become much more erratic for the frequently load balanced Dome program.
The distribution of the elements of a dVector on five processors with different
amounts of load is shown in Figure 8. Note that there is soine data movement
even in the “balanced” case. The effects of having extra load on processor 0
is clear. The reduction in the number of elements on this processor causes the
other processors to increase their share of the dVector. The number of elements
on these other processors is also maintained in balance so that the order of these
processors in terms of their number of elements is preserved and the number of
elements on each is in approximately the same ratio as in the balanced case.
These results are surprising in two ways. The overhead of using Dome is
greater than expected and our load balancing scheme cannot overcome this
overhead greatly. We already use some time (and space) saving memory man-
agement techniques; however, we believe that we can do more in this area. We

11

et

L]
~
©
3
-
~

Figure 8: Distribution of vectors at different load balancing phases for a) a
balanced system, b) one loader process and ¢) two loader processes.

12

are also unsure of the differences that compiler optimization is causing between
the Dome and PVM implementations. In Dome, we specify multiplication be-
tween corresponding elements in the dVector producing a product dVector, this
is followed by the gsum operation that sums these elements. The PVM im-
plementation produces the multiplication of an element of each dVector and
accumulates the sum in one C++ statement. This may produce better register
usage by the compiler. Probably an even bigger factor in the Dome overhead is
due to an increase in the number of cache misses. The dVector multiply requires
all the elements from three dVectors, the two sources and the result, to be ac-
cessed one element at a time. Following this, the gsum operation requires the
entire result dVector to be traversed. Since the portion of these dVectors that is
resident on each single processor is quite large (approximately 680 Kbytes in the
3 processor case), it cannot fit in the cache in its entirety. The PVM program
just performs the gsum and multiply at the same time on the two dVectors and
accumulates the sum causing a lot fewer cache misses.

We also believe that the load balancing should be able to consistently im-
prove on the runtime to a greater extent than it currently does. By reducing the
load balancing costs, the runtime benefits will be more evident. We can reduce
the costs by decreasing the number of messages used in a load balance phase
and by doing more careful timing of the computation phases. More careful tim-
ing will also allow more accurate decisions to be made during the load *: ".nce
phases.

Clearly more work needs to be done with respect to the efficiency of the
object oriented approach taken in Dome and to the effectiveness of the dynamic
load balancing implementation.

4 Architecture Independent Checkpoint and
Restart

As we increase the number of machines and the average runtime of our computa-
tions, it is becoming clear that any practical parallel programming environment
will have to provide some sort of failure tolerance. When designing Dome’s fault
tolerance features, there are a number of issues that we have considered. First,
the reduction in the mean time between failures makes it increasingly necessary
to use a checkpoint-based strategy rather than starting over after each failure.
When more than one process is involved in the computation, in addition, we
must take care to coordinate the states of the multiple checkpoints. Further-
more, in a heterogeneous environment, architecture independence is very im-
portant; if a process on a Cray C90 fails, the chances of quickly finding another
C90 to start it on are slim.

Some preliminary work has been done on the general problem of checkpoint
and restart of PVM programs [10]. In general, checkpoint and restart schemes

13

work as follows. Periodically, process state is saved to a checkpoint file. If a
failure occurs then the process can be restarted from a saved checkpoint. Leon’s
and most other current methods work by saving the entire process state (i.e., a
core image) to the checkpoint file. Dome attempts to address the problem from
a high level by saving only the Dome specific data structures. (By overload-
ing our Dome checkpoint operation, the programmer may also cause ordinary
non-Dome data structures to be included in the checkpoints.) If each object
provides a checkpoint method then all of the Dome data structures can be eas-
ily checkpointed. The checkpoint methods are implemented in such a way as
to store the data in an architecture independent format such as XDR. Upon
restart the checkpoint is valid on any architecture, assuming the proper restart
functions have been implemented.

Although we do not discuss it in detail here, we have demonstrated architec-
ture independent checkpoint and restart with Dome dVector objects on a real
application, in this case 2 molecular dynamics code developed at the Pittsburgh
Supercomputing Center.

5 Conclusions and Future Work

This paper presents a brief introduction to Dome (distributed object migration
environment) and an initial evaluation of a dynamic load balancing scheme
implemented in Dome. Dome addresses the issues of ease of programming,
dynamic load balancing, and architecture independent checkpoint and restart.
We show that Dome programming is easier than message passing for parallel
programming.

Our initial evaluation of Dome’s performance shows considerable overhead.
The load balancing heuristic we currently use for dVectors cannot compensate
for this overhead. However, in many cases the heuristic is successful in masking
the additional cost of load balancing. Although these results may be seen as
discouraging, we view them simply as an indication that the problem is non-
trivial; as we reduce the costs of the basic dVector operations, we expect to see
the results of load balancing improve.

Our next step with regards to Dome is to optimize our implementation by
carefully studying the memory usage and message passing overheads involved in
executing a Dome program with dynamic load balancing. We are also continuing
our exploration of the architecture independent checkpoint and restart facilities.

We are convinced the Dome paradigm is a good one. We are continuing our
efforts toward developing a rich set of objects which efficiently support parallel
programming in 2 shared heterogeneous environment.

6 Availability

Dome is implemented in C++ and uses PVM extensively, both of which are
widely available. We plan on making Dome available on a variety of platforms.
We will be distributing Dome to the community and will be providing limited
support. Contact the authors for a current copy of the software.

References

[1] A. Beguelin, J. Dongarra, A. Geist, and V. Sunderam. Visualization and
debugging in a heterogeneous environment. JEEE Computer, 26(6):88-95,
June 1993.

(2] Kenneth Birman and Keith Marzullo. Isis and the META project. Sun
Technology, pages 90-104, Summer 1989.

(3] F. Bodin, P. Beckman, D. Gannon, S. Yang, S. Kesavan, A. Malony, and
B. Mohr. Implementing a parallel C++ runtime system for scalable parallel
systems. In Supercomputing 93, 1993.

[4] Nicholas Carriero and David Gelernter. How to write parallel programs: A
guide to the perplexed. ACM Computing Surveys, pages 323-357, Septem-
ber 1989.

[5] J. Dongarra, R. Pozo, and D. Walker. An object oriented design for high
performance linear algebra on distributed memory architectures. In Proc.
OON-SKI Object Oriented Numerics Conf., pages 257-264, Sun River, Ore-
gon, April 1993.

{6] J. Flower, A. Kolawa, and S. Bharadwaj. The express way to distributed
processing. Supercomputing Review, pages 54-55, May 1991.

[7] A. Geist, A. Beguelin, J. J. Dongarra, W. Jiang, R. Manchek, and V. S.
Sunderam. PVM 3 user’s guide and reference manual. Technical Report
ORNL/TM-12187, Oak Ridge National Laboratory, May 1993.

[8] High Performance Fortran Forum. High Performance Fortran Language
Specification, January 1993. Version 1.0 DRAFT.

[9] Jenq Kuen Lee and Dennis Gannon. Object oriented parallel programming
experiments and results. In Supercomputing 91, pages 273-282, 1991.

[10] Juan Leon, Allan L. Fisher, and Peter Steenkiste. Fail-safe pvm: A portable
package for distributed programming with transparent recovery. Technical
Report CMU-CS-93-124, Carnegie Mellon University, February 1993.

[11] Ewing Lusk, Ross Overbeek, et al. Portable Programs for Parallel Proces-
sors. Holt, Rinehart and Winston, Inc., 1987.

15

A Sequential Matrix Multiply Code

// Adam Beguelin
// Jan 1994
// Sequential Matrix multiply, C = A * B

// multiply an MxN by an NxL matrix to get an MxL matrix
// The matrix C is replicated on all processors

// The rows of A are dVectors

// The cols of B are dVectors

// Regular C includes
extern "C" {

#ifndef __DECCXX

extern long random(void);
#else

extern long random();
#endif

}

// C++ includes
#include <stdio.h>
#include <strings.h>
#include <assert.h>
#include <stdlib.h>
#include <stream.h>
#include <math.h>
#include <fstream.h>
#include "debug.h"

// Dome include files

#include "dTimer.h"

const int MAXM = 3;
const int MAXN = 262144; // .25 MB
const int MAXL = 3;

#ifndef __DECCXX
// Declare some vectors.
double a[MAXNM] (MAXN];
double b[MAXN] [MAXL];

// result matrix

16

double c[MAXM] [MAXL];
#endit

// The main program

int
main(int argc, char *argv([])
{

int nloops=10;

int m,n,l;

double dot_product;

// Get the input parameters

it (arge '= 4) {
cerr << "usage: smult <m> <n> <1>\n";
return -1;

}
m = atoi(argv([1l);
n = atoi(argv(2]);
1 = atoi(argv(3l);

#ifdef __DECCXX
// Declare some vectors.
double a[MAXM] [MAXN];
double b[MAXN] [MAXL];

// result matrix
double c[MAXM] [MAXL];
#endit

// a timer
dTimer t¢;

int i,j,k;

// Generate the inputs
for (i = 0; i < m; i++)
for (j = 0; j < m; j++)
alil[j] = double(random() % 100)/10.0;
for (i = 0; i < n; i++)
for (j = 0; j < 1; j++)
b[il[j] = double(random() % 100)/10.0;

17

t.start();

while{nloops--) {
for (i = 0; i < m; i++) {
for (j = 0; j <1; j++) {
for (k = 0, c[il[j] = 0.0; k < n; k++)
c[il[j] += (afilfx] = bIk1[j1);
}
}
}

t.stop();

cout << "\nTime " << t.elapsed() << "\n";

18

B Dome Matrix Multiply Code

// Adam Beguelin
// Jan 1994
// Matrix multiply, C = A * B

// multiply an Mx¥ by an NxL matrix to get an MxL matrix
// The matrix C is replicated on all processors

// The rows of A are dVectors

// The cols of B are dVectors

// Regular C includes
extern "C" {

#ifndef __DECCXX

extern long random(void);
#else

extern long random();
#endif

}

// C++ includes
#include <stdio.h>
#include <strings.h>
#include <assert.h>
#include <stdlib.h>
#include <stream.h>
#include <math.h>
#include <fstream.h>
#include "debug.h"

// Dome include files
#include "dome.h"
#include "dVector.h"
#include "dTimer.h"
#include "domeobj.h"

const int MAXM = 100;
const int MAXL 100;

// The main program
int

main(int argc, char *argv(])

{

19

int nloops=10;

int nproc;

int n,n,l;

double dot_product;

// Get the input parameters

if (arge != 5) {
cerr << "usage: mmult <nproc> <m> <n> <1>\n";
return -1;

}

nproc=atoi(argv(i]);
m = atoilargv[2]);
n = atoi(argv(3]);
1 = atoi(argvi4]);

// Create a dome envirorment. The first step in any dome program.
dome tdome(argc,argv,nproc);

// Declare some distributed dVectors.

// Each of these vectors will be spread across all processes.
dVector<double> *a[MAXM]; // Rows of a are dVectors
dVector<double> *b[MAXL]; // Cols of b are dVectors

// result matrix
double c[MAXM] [MAXL];

// a timer
dTimer t;

int i,j;

// Get the input from cin.

for (i = 0; i < m; i++) {
ali] = new dVector<double>(tdome, n);
*a[il = double(random() % 100)/10.0;
}

for (i = 0; i < 1; i++) {

blil = new dVector<double>(tdome, n);
#b[i] = double(random() % 100)/10.0;
}

t.start();

20

while(nloops—-) {

for (i = 0; i < m; i++) {
for (j = 0; j <1; j++) {
c[i1[j] = (#alil * *b[j]).gsum();
}
}
}
t.stop();

cout << "\nTime " << t.elapsed() << "\n";

// delete the vectors

for (i = 0; i < m; i++) delete alil;
for (j = 0; j < 1; j++) delete b[jl;
delete [a ;

delete [1 b ;

21

C PVM Matrix Multiply Code

// Adam Beguelin

// Jan 1994

// M¥atrix multiply, C = A * B
// PVM Version

// multiply an MxN by an NxL matrix to get an MxL matrix
// The matrix C is replicated on all processors

// The rows of A are dVectors

// The cols of B are dVectors

// Regular C includes
extern "C" {

#ifndef __DECCXX

extern long random(void);
#else

extern long random();
#endif

extern int pvm_errno;

¥

// C++ includes
#include <stdio.h>
#include <strings.h>
#include <assert.h>
#include <stdlib.h>
#include <stream.h>
#include <math.h>
#include <fstream.h>
#include <pvm3.h>
#include "dTimer.h"
#include "pvm3pack.h"
#include "debug.h"

extern int alb_spawn(char *, char **, int , int *);

const int MTAG = 1971;
const int MAXM = 100;
const int MAXL = 100;

// The main program
int

22

main(int a gc, char *argv[])
{

int nloops=10;

int count;

int m,n,1;

double dot_product;

dTimer ¢t;

// PVM vars

int *tids;

int mytid, mygid, parent;
int len, mtag, info;

// Register with PVM

if ((mytid = pvm_mytid()) < 0) { pvm_perror{("pmult"); return -1; }

pvm_setopt (PvmRoute, PvmRouteDirect);

if ((mygid = pvm_joingroup("pmult")) < 0) { pvm_perror("pmult"); return -1; }
parent = pvm_parent();

// Get the input parameters
if (mygid == 0) {
if (arge !=8) {
cerr << "usage: pmult <count> <m> <n> <1>\n";

return -1;

}
count=atoi(argv[i]);
m = atoi(argv(2]);
n = atoi(argv(3]);
1 = atoi(argv{4l);
}

// Spawn the PVM tasks
if (mygid == 0) {
tids = new int[count];
tids[0] = mytid;
info = alb_spawn("pmult"”, (char *#)0, count-1, tids+1);
if (info != (count-1)) {
cerr << "Spawn failed\n" << tids[1] ;
pvm_lvgroup("pmult");
pva_exit();
delete [] tids;
return -1;

3

23

pvm_initsend(PvmDataDefault);
pvm_pk(&count); pvm_pk(&m); pvm_pk(&n); pvm_pk(&l);
pvm_mcast (tids, count, MTAG);
}
else {
pvm_recv(parent, MTAG);
pvm_upk(&count); pvm_upk(&m); pvm_upk(&n); pvm_upk(&l);
}

// Declare some distributed dVectors.

// Bach of these vectors will be spread across all processes.
double *a[MAXM]; // Rows of a are dVectors

double *b[MAXL]; // Cols of b are dVectors

// result matrix
double c[MAXM] [MAXL];

double tmp;
int i,j,p;

// Generate the vectors

len = n/count;

if (mygid < (n % count)) lent+;
for (i = 0; i < m; i++) {

ali] = new double [len];
tmp = (random() % 100) / 10.0;
for (j=0; j < lem; j++) alil[jl = tmp;
}
for (i = 0; i < 1; i++) {
bfli] = new double [len];
tmp = (random() % 100) / 10.0;
for (j=0; j < lem; j++) b[il1[j]l = tmp;

}
// Do the multiply
t.start();

while(nloops-~) {
for (i = 0; i < m; i++) {
for (j = 0; j <1; j++) {
clil[jl = 0.0;
// Calculate the partial sum
for (p = 0; p < len; p++)

24

c[i1[j] += afillp] = b(j10pl;
// Use a unique message tag for each elt of ¢
mtag = ism+j;
if (mygid == 0) {
for (p = 1; p < count; p++) {
pvm_recv(-1, mtag);

pvm_upk(&tmp) ;

c[il[j]1 += tmp;

}
pvm_initsend(PvmDataDefault);
pvm_pk(&c[il[j1);
pvm_mcast(tids, count, mtag);
}

else {
pvm_initsend (PvmDataDefault);
pvm_pk(&c[i][31);
pvm_send(parent, mtag);
pvm_recv(parent, mtag);
pvm_upk(&clil [j1);
}

}
}
t.stop();

cout << "\nTime " << t.elapsed() << "\n";

// delete the vectors
for (i = 0; i < m; i++) delete [J alil;
for (j = 0; j < 1; j++) delete [] b[jl;

delete [1 tids;
pvm_lvgroup("pmult");
pvm_exit();

return O;

25

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213-3890

Carnegie Meilon Urivers Wl disenrmmat
discriminate i agmussicn sloyment or adm
natonal ongn. Sex or handican mn viciation of Tl
Educatonal Amendments or 1972 and Section 504 ~F » o Ranand:
state or iocal Jaws of executive orders

Inagation, Carrege Malon Unversity doas nict (rsr « maniles o @0rma . brngad, e 1o il
tration of s programs o the pase Af re WA (80 L N

orentation or 1 yolation of federa Tal A o ceeoutive st

Ingumes concerrng anphcator of hese staterments shioad Bie drociog oep iy
Mellon University 5000 Farpes Avenue Bty e JEG B
President for Errolios

15 telepnary

L Carcege Mellon University, BUO00 Forbos Avereas 0 tsnngn 204
tetephone (412} 268-2056

